

V Semester B.A./B.Sc. Examination, November/December 2014 (Semester Scheme) (N.S.) (2013-14 and Onwards) MATHEMATICS – V

ime: 3 Hours Max. Marks: 100

Instructions: Answerall questions.

Answer any fifteen questions:

(15×2=30)

- 1) In a vector space V(F) show that $(-a)\alpha = -(a\alpha)$, $\forall a \in F, \alpha \in V$.
- 2) Show that $S = \{(x, y, z)/x = 2y = 3z\}$ is a subspace of $V_3(R)$.
- 3) Examine for linear dependence of the vectors (2, 1, 3), (-3, 4, 5), (1, -2, 1) in V₃(R).
- 4) Show that $T: V_3(R) \rightarrow V_2(R)$ defined by T(x, y, z) = (x + z, y) is a linear transformation.
- 5) Find the matrix of the linear transformation $T: V_3(R) \rightarrow V_2(R)$ defined by T(x, y, z) = (2x + 3y, y + 3z) relative to standard bases.
- 6) Find the null space of the linear transformation $T: V_2(R) \to V_2(R)$ defined by T(x, y) = (x + y, x).
- 7) If the vector function $\vec{f}(t)$ has constant magnitude, show that \vec{f} is perpendicular to $\frac{d\vec{f}}{dt}$ (provided $\frac{d\vec{f}}{dt} \neq 0$).
- 8) For a space curve define (i) Curvature, (ii) Torsion at any point.
- 9) Show that the necessary and sufficient condition for a curve in space to be a straight line is that the curvature K = 0 at all points.
- 10) Find the unit tangent vector at t = 2 for the curve $\vec{r} = (t^2 + 1)\hat{i} + 2t\hat{j} (t^3 + t)\hat{k}$.
- 11) Find the equation of the tangent plane to the cylinder $x^2 + y^2 = 4$ at $(1, \sqrt{3}, 2)$.
- 12) Find the spherical co-ordinates of the point whose Cartesian co-ordinates

are
$$\left(\frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}, \sqrt{2}\right)$$
.

- 13) Find the maximal directional derivative of $x^2 + yz^2$ at (1, -1, 3).
- 14) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$ find div $(r^n \vec{r})$ in terms of r.
- 15) Show that the vector field $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{i}$ irrotational.
- 16) Find $\nabla^2 \phi$ where $\phi = xz + zy + xy$.
- 17) If $F[f(x)] = \hat{f}(\alpha)$, prove that $F[f(ax)] = \frac{1}{a}\hat{f}(\frac{\alpha}{a})$, (a > 0).
- 18) Find the inverse Fourier transform of $\hat{f}(\alpha) = \begin{cases} & |\alpha| \le a \\ & |\alpha| > a \end{cases}$
- 19) Find the Fourier cosine transform of $f(x) = e^{-5x}$.
- 20) Prove that $F_s[f'(x)] = -\alpha F_c[f(x)]$.

II. Answer any four of the following:

- 1) Prove that the set $V = \{a+b\sqrt{2} / a, b \in Q\}$ where Q is the field of rational numbers form a vector space with respect to the addition and multiplication of rational numbers.
- 2) Show that the vectors (1, 2, -3), (1, -3, 2) and (2, -1, 5) span the vectors (1, -2, 7) in $V_3(R)$.
- Prove that every linearly independent subset of a finitely generated very space V(F) form a part of a basis of V(F).
- State and prove Rank-Nullity theorem.
- 6) Show that T: V₃(R) → V₃(R) defined by T(x, y,z) = (2x, 3z, y) is non-single and find its inverse.

THE RESIDENCE OF THE PERSON OF

III. Ansier any four questions:

(4×5=20)

- 1) lerive the expressions for curvature and Torsion in terms of the derivatives \vec{r} for a space curve with respect to the arc length s.
- 2) or the space curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$, find K and τ .
- 3) ind the angle between the unit tangent vectors drawn to the curve = a cos 2t, y = a sin 2t, x = at, at the points $t = \frac{\pi}{6}$ and $t = \frac{\pi}{4}$.

4) ind the equations of the tangent plane and normal line to the surface (y + yz + zx = -1) at (-2, 3, 5).

y + yz + zx = -1 at (-2, 3, 5). 5^{-ind} the angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 - y$ yz = 1 at (-2, 3, 5).

Express the vector $\vec{f} = z^2\hat{i} - zx^2\hat{j} + 4y\hat{k}$ in cylindrical co-ordinates.

IV. Awer any three of the following:

 $(3 \times 5 = 15)$

If $\vec{f} = 2x\hat{i} + 3y\hat{j} + 4z\hat{k}$ and $\phi = xy^2z^3$, find (i) $\vec{f} \cdot \nabla \phi$ (ii) $\nabla |\vec{f}|^2$.

Find the directional derivative of ϕ (x, y, z) = xyz - xy²z³ at (1, 2, -1) in the direction of the vector $\hat{i} - \hat{j} - 3\hat{k}$.

Prove that $\nabla \times \left(\phi \vec{f} \right) = \phi \left(\nabla \times \vec{f} \right) + \nabla \phi \times \vec{f}$ for any scalar function ϕ and vector function \vec{f} .

Find $\nabla \times (\nabla \times \vec{f})$ given $\vec{f} = x^2y\hat{i} + y^2z\hat{j} + z^2x\hat{k}$.

) Show that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ where $r^2 = x^2 + y^2 + z^2$.

V. Answer any three of the following:

(3x5=

- 1) Express $f(x) = \begin{cases} 1 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ as a Fourier integral. Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx.$
- 2) Find the Fourier transform of $f(x) =\begin{cases} 1-|x| & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$
 - 3) Show that $xe^{-\frac{x^2}{2}}$ is self reciprocal under the Fourier Sine Transform.
- 4) Find the Fourier Cosine Transform of $f(x) = \frac{BMS}{1+x^2}CW$
 - 5) Given $F_S[xe^{-ax}] = \sqrt{\frac{2}{\pi}} \times \frac{2a\alpha}{(a^2 + \alpha^2)^2}$ and $F_C[e^{-ax}] = \sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \alpha^2}$, find $F_C[xe^{-ax}]$